Binary to Hexadecimal Converter
Convert binary values to hexadecimal by entering a binary number and pressing convert.
Information on Number Conversion
A number system is a method of expressing numbers in a consistent manner using digits and numbers. There are different number system like, Decimal, Binary, Octal, Hexadecimal. These different number systems are used in different contexts.
Binary Number System
Binary number system is a base 2 number system. It uses only two digits, 0 and 1. The position of each digit in a binary number denotes the power of 2. The rightmost digit is the ones place, the next digit to the left is the twos place, the next digit to the left is the fours place, and so on.
An example of a binary number is
10112 = 1×23 + 0×22 + 1×21 + 1×20
Hexadecimal Number System
Hexadecimal number system is a base 16 number system. It uses 16 digits from 0 to 9 and A to F. The position of each digit in a hexadecimal number denotes the power of 16. The rightmost digit is the ones place, the next digit to the left is the sixteens place, the next digit to the left is the two hundred fifty-six place, and so on.
An example of a hexadecimal number is
123416 = 1×163 + 2×162 + 3×161 + 4×160
How to convert Binary to Hexadecimal?
To convert a binary number to hexadecimal, you can use the following steps:
Step 1: Write down the binary number.
Step 2: Group the binary digits into groups of four starting from the right.
Step 3: Write down the hexadecimal equivalent of each group of four binary digits.
Table of Binary to Hexadecimal Conversion
Binary | Hexadecimal |
---|---|
0000 | 0 |
0001 | 1 |
0010 | 2 |
0011 | 3 |
0100 | 4 |
0101 | 5 |
0110 | 6 |
0111 | 7 |
1000 | 8 |
1001 | 9 |
1010 | A (10) |
1011 | B (11) |
1100 | C (12) |
1101 | D (13) |
1110 | E (14) |
1111 | F (15) |
Example: Convert 1011 1101 01102 to (?)16
Step 1: Write down the binary number: 1011 1101 01102
Step 2: Group the binary digits into groups of four starting from the right: 1011 1101 01102 = 1011 1101 01102
Step 3: Write down the hexadecimal equivalent of each group of four binary digits: 1011 = B, 1101 = D, 0110 = 6
Therefore, 1011 1101 01102 = B D 616
Example: Convert 1101 1010 1111 01102 to (?)16
Step 1: Write down the binary number: 1101 1010 1111 01102
Step 2: Group the binary digits into groups of four starting from the right: 1101 1010 1111 01102 = 1101 1010 1111 01102
Step 3: Write down the hexadecimal equivalent of each group of four binary digits: 1101 = D, 1010 = A, 1111 = F, 0110 = 6
Therefore, 1101 1010 1111 01102 = D A F 616
Elaborate Table
Binary | 1101 1010 1111 0110 | ||
Grouped in 4-bits | 1101 1010 1111 0110 | ||
Hexadecimal | d a f 6 | ||
Result | daf6 | ||
The hexadecimal Representation of (1101101011110110)2 is (DAF6)16 |
- Decimal to Hexadecimal Converter
- Hexadecimal to Binary Converter
- Binary to Octal Converter
- Octal to Decimal Converter
- Binary to Hexadecimal Converter
- Hexadecimal to Decimal Converter
- Binary to Decimal Converter
- Hexadecimal to Octal Converter
- Random Number Generator
- Octal to Hexadecimal Converter
- Octal to Binary Converter
- Decimal to Octal Converter
- Decimal to Binary Converter
Login or Signup to add a comment