Hexadecimal to Octal Converter
Convert hexadecimal numbers to octal by entering a hexadecimal value and pressing convert.
Information on Number Conversion
A number system is a method of expressing numbers in a consistent manner using digits and numbers. There are different number system like, Decimal, Binary, Octal, Hexadecimal. These different number systems are used in different contexts.
Octal Number System
Octal number system is a base 8 number system. It uses 8 digits from 0 to 7. The position of each digit in an octal number denotes the power of 8. The rightmost digit is the ones place, the next digit to the left is the eights place, the next digit to the left is the sixty-fours place, and so on.
An example of an octal number is
12348 = 1×83 + 2×82 + 3×81 + 4×80
Hexadecimal Number System
Hexadecimal number system is a base 16 number system. It uses 16 digits from 0 to 9 and A to F. The position of each digit in a hexadecimal number denotes the power of 16. The rightmost digit is the ones place, the next digit to the left is the sixteens place, the next digit to the left is the two hundred fifty-six place, and so on.
An example of a hexadecimal number is
123416 = 1×163 + 2×162 + 3×161 + 4×160
Hexadecimal to Octal Conversion table
The table below shows the hexadecimal to octal conversion.
Decimal | Octal | Binary | Hexadecimal |
---|---|---|---|
0 | 0 | 0000 | 0 |
1 | 1 | 0001 | 1 |
2 | 2 | 0010 | 2 |
3 | 3 | 0011 | 3 |
4 | 4 | 0100 | 4 |
5 | 5 | 0101 | 5 |
6 | 6 | 0110 | 6 |
7 | 7 | 0111 | 7 |
8 | 10 | 1000 | 8 |
9 | 11 | 1001 | 9 |
10 | 12 | 1010 | A |
11 | 13 | 1011 | B |
12 | 14 | 1100 | C |
13 | 15 | 1101 | D |
14 | 16 | 1110 | E |
15 | 17 | 1111 | F |
How to convert Hexadecimal to Octal?
To convert a hexadecimal number to octal, you can use the following steps:
Step 1: Convert the hexadecimal number to decimal.
Step 2: Convert the decimal number to octal.
Example 1: Convert 4D216 to (?)8
Step 1: Convert the hexadecimal number to decimal: 4D216 = 123410
Step 2: Convert the decimal number to octal: 123410 = 23228
Therefore, 4D216 = 23228
Elaborate Table
Operation | Result | ||
---|---|---|---|
Hexadecimal | 4 D 2 | ||
Binary | 0100 1101 0010 | ||
Grouped in 3-bits | 010 011 010 010 | ||
Octal | 2 3 2 2 | ||
Result | 2322 | ||
The octal Representation of 4D216 is 23228 |
Example 2: Convert 1A16 to (?)8
Step 1: Convert the hexadecimal number to decimal: 1A16 = 2610
Step 2: Convert the decimal number to octal: 2610 = 328
Therefore, 1A16 = 328
Elaborate Table
Operation | Result | ||
---|---|---|---|
Hexadecimal | 1 A | ||
Binary | 0001 1010 | ||
Grouped in 3-bits | 000 110 100 | ||
Octal | 3 2 | ||
Result | 32 | ||
The octal Representation of 1A16 is 328 |
- Hexadecimal to Decimal Converter
- Hexadecimal to Binary Converter
- Octal to Decimal Converter
- Hexadecimal to Octal Converter
- Octal to Hexadecimal Converter
- Decimal to Hexadecimal Converter
- Random Number Generator
- Decimal to Octal Converter
- Binary to Octal Converter
- Binary to Decimal Converter
- Binary to Hexadecimal Converter
- Octal to Binary Converter
- Decimal to Binary Converter
Login or Signup to add a comment