Octal to Hexadecimal Converter
Convert octal numbers to hexadecimal by entering an octal value and clicking convert.
Information on Number Conversion
A number system is a method of expressing numbers in a consistent manner using digits and numbers. There are different number system like, Decimal, Binary, Octal, Hexadecimal. These different number systems are used in different contexts.
Octal Number System
Octal number system is a base 8 number system. It uses 8 digits from 0 to 7. The position of each digit in an octal number denotes the power of 8. The rightmost digit is the ones place, the next digit to the left is the eights place, the next digit to the left is the sixty-fours place, and so on.
An example of an octal number is
12348 = 1×83 + 2×82 + 3×81 + 4×80
Hexadecimal Number System
Hexadecimal number system is a base 16 number system. It uses 16 digits from 0 to 9 and A to F. The position of each digit in a hexadecimal number denotes the power of 16. The rightmost digit is the ones place, the next digit to the left is the sixteens place, the next digit to the left is the two hundred fifty-six place, and so on.
An example of a hexadecimal number is
123416 = 1×163 + 2×162 + 3×161 + 4×160
Octal to Hexadecimal Conversion table
The table below shows the octal to hexadecimal conversion.
Decimal | Octal | Binary | Hexadecimal |
---|---|---|---|
0 | 0 | 0000 | 0 |
1 | 1 | 0001 | 1 |
2 | 2 | 0010 | 2 |
3 | 3 | 0011 | 3 |
4 | 4 | 0100 | 4 |
5 | 5 | 0101 | 5 |
6 | 6 | 0110 | 6 |
7 | 7 | 0111 | 7 |
8 | 10 | 1000 | 8 |
9 | 11 | 1001 | 9 |
10 | 12 | 1010 | A |
11 | 13 | 1011 | B |
12 | 14 | 1100 | C |
13 | 15 | 1101 | D |
14 | 16 | 1110 | E |
15 | 17 | 1111 | F |
How to convert Octal to Hexadecimal?
To convert an octal number to hexadecimal, you can use the following steps:
Step 1: Convert the octal number to decimal.
Step 2: Convert the decimal number to hexadecimal.
Example 1: Convert 23228 to (?)16
Step 1: Convert the octal number to decimal: 23228 = 123410
Step 2: Convert the decimal number to hexadecimal: 123410 = 4D216
Therefore, 23228 = 4D216
Elaborate Table
Octal | 2 3 2 2 | ||
Binary | 010 011 010 010 | ||
Grouped in 4-bits | 0100 1101 0010 | ||
Hexadecimal | 4 d 2 | ||
Result | 4D2 | ||
The hexadecimal Representation of (2322)8 is (4D2)16 |
Example 2: Convert 3611008 to (?)16
Step 1: Convert the octal number to decimal: 3611008 = 1593610
Step 2: Convert the decimal number to hexadecimal: 1593610 = 3E8016
Therefore, 3611008 = 3E8016
Elaborate Table
Octal | 3 6 1 1 0 0 | ||
Binary | 011 110 001 001 000 000 | ||
Grouped in 4-bits | 0001 1110 0010 0100 0000 | ||
Hexadecimal | 1 e 2 4 0 | ||
Result | 1e240 | ||
The hexadecimal Representation of (361100)8 is (1E240)16 |
- Binary to Hexadecimal Converter
- Hexadecimal to Binary Converter
- Decimal to Hexadecimal Converter
- Hexadecimal to Decimal Converter
- Binary to Octal Converter
- Octal to Decimal Converter
- Binary to Decimal Converter
- Decimal to Octal Converter
- Decimal to Binary Converter
- Octal to Binary Converter
- Octal to Hexadecimal Converter
- Random Number Generator
- Hexadecimal to Octal Converter
Login or Signup to add a comment