Decimal to Binary Converter

Convert decimal numbers to binary by inputting a decimal value and pressing the convert button.

Information on Number Conversion

A number system is a method of expressing numbers in a consistent manner using digits and numbers. There are different number system like, Decimal, Binary, Octal, Hexadecimal. These different number systems are used in different contexts.

Decimal Number System

Decimal number system is the most commonly used number system. It is a base 10 number system. It uses 10 digits from 0 to 9. The position of each digit in a decimal number denotes the power of 10. The rightmost digit is the ones place, the next digit to the left is the tens place, the next digit to the left is the hundreds place, and so on.

An example of a decimal number is
123410 = 1×103 + 2×102 + 3×101 + 4×100

Binary Number System

Binary number system is a base 2 number system. It uses only two digits, 0 and 1. The position of each digit in a binary number denotes the power of 2. The rightmost digit is the ones place, the next digit to the left is the twos place, the next digit to the left is the fours place, and so on.

An example of a binary number is
10112 = 1×23 + 0×22 + 1×21 + 1×20

How to convert Decimal to Binary?

To convert a decimal number to binary, you can use the following steps:

Step 1: Write down the decimal number.

Step 2: Divide the decimal number by 2.

Step 3: Write down the remainder (0 or 1) and quotient.

Step 4: Repeat steps 2 and 3 with the quotient until the quotient is 0.

Example 1: Convert 123410 to (?)2

Step 1: Write down the decimal number: 123410

Step 2-3: Make a table of the division of 1234 by 2:

Division by 2QuotentRemainderBit
\frac{1234}{2}61700
\frac{617}{2}30811
\frac{308}{2}15402
\frac{154}{2}7703
\frac{77}{2}3814
\frac{38}{2}1905
\frac{19}{2}916
\frac{9}{2}417
\frac{4}{2}208
\frac{2}{2}109
\frac{1}{2}0110
The binary Representation of (1234)10 is (10011010010)2

Example 2: Convert 12345610 to (?)2

Step 1: Write down the decimal number: 12345610

Step 2-3: Make a table of the division of 123456 by 2:

Division by 2QuotentRemainderBit
\frac{123456}{2}6172800
\frac{61728}{2}3086401
\frac{30864}{2}1543202
\frac{15432}{2}771603
\frac{7716}{2}385804
\frac{3858}{2}192905
\frac{1929}{2}96416
\frac{964}{2}48207
\frac{482}{2}24108
\frac{241}{2}12019
\frac{120}{2}60010
\frac{60}{2}30011
\frac{30}{2}15012
\frac{15}{2}7113
\frac{7}{2}3114
\frac{3}{2}1115
\frac{1}{2}0116
The binary Representation of (123456)10 is (11110001001000000)2

Decimal to Binary conversion table

The table below shows the binary representation of decimal numbers from 0 to 16.

DecimalBinary
00
11
210
311
4100
5101
6110
7111
81000
91001
101010
111011
121100
131101
141110
151111
1610000

Comments on this page

Login or Signup to add a comment